กิจกรรม 17 -21 มกราคม 2554

ตอบข้อ 3.

อธิบาย : การเคลื่อนที่ (อังกฤษ: motion) คือ การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ซึ่งวัดโดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง เมื่อปลายคริสต์ศตวรรษที่ 19 เซอร์ไอแซก นิวตัน ได้เสนอกฎการเคลื่อนที่ของนิวตันในหนังสือ Principia ของเขา ซึ่งต่อมาได้กลายเป็นกฎพื้นฐานของฟิสิกส์ดั้งเดิม การคำนวณการเคลื่อนที่ของวัตถุต่างๆ โดยใช้ฟิสิกส์ดั้งเดิมนั้นประสบความสำเร็จมาก จนกระทั่งนักฟิสิกส์เริ่มศึกษาเกี่ยวกับสิ่งที่เคลื่อนที่ด้วยความเร็วสูง มาก
นักฟิสิกส์พบว่า ฟิสิกส์ดั้งเดิมไม่สามารถคำนวณสิ่งที่เคลื่อนที่ด้วยความเร็วสูงได้แม่นยำ เพื่อแก้ปัญหานี้ อองรี ปวงกาเร และ อัลเบิร์ต ไอน์สไตน์ได้ เสนอทฤษฎีอธิบายการเคลื่อนที่ของวัตถุ เพื่อใช้แทนของกฎของนิวตัน กฎการเคลื่อนที่ของนิวตันกำหนดให้อวกาศและเวลาเป็นสิ่งสัมบูรณ์ แต่ทฤษฎีไอน์สไตน์กับปวงกาเร ซึ่งเรียกว่า ทฤษฎีสัมพัทธภาพพิเศษ กำหนดให้ค่าเหล่านี้เป็นสิ่งสัมพัทธ์ ซึ่งต่อมา ทฤษฎีสัมพัทธภาพพิเศษก็เป็นที่ยอมรับในการอธิบายการเคลื่อนที่ เพราะทำนายผลลัพธ์ได้แม่นยำกว่า อย่างไรก็ตาม ในทางปฏิบัติ กฎการเคลื่อนที่ของนิวตันยังเป็นที่ใช้กันอยู่ โดยเฉพาะงานด้านฟิสิกส์ประยุกต์และงานวิศวกรรม เพราะสามารถคำนวณได้ง่ายกว่าทฤษฎีสัมพัทธภาพพิเศษ

ที่มา : http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88


ตอบข้อ 2.  10 m/s

อธิบาย : นิยามเชิงปริมาณ
ในแบบจำลองทางฟิสิกส์ เราใช้ระบบเป็นจุด กล่าวคือเราแทนวัตถุด้วยจุดหนึ่งมิติที่ศูนย์กลางมวลของมัน การเปลี่ยนแปลงเพียงชนิดเดียวที่เกิดขึ้นได้กับวัตถุก็คือการเปลี่ยนแปลงโมเมนตัม (อัตราเร็ว) ของมัน ตั้งแต่มีการเสนอทฤษฎีอะตอมขึ้น ระบบทางฟิสิกส์ใดๆ จะถูกมองในวิชาฟิสิกส์คลาสสิกว่าประกอบขึ้นจากระบบเป็นจุดมากมายที่เรียกว่าอะตอมหรือโมเลกุล เพราะฉะนั้น แรงต่างๆ สามารถนิยามได้ว่าเป็นผลกระทบของมัน นั่นก็คือเป็นการเปลี่ยนแปลงสภาพการเคลื่อนที่ที่มันได้รับบนระบบเป็นจุด การเปลี่ยนแปลงการเคลื่อนที่นั้นสามารถระบุจำนวนได้โดยความเร่ง (อนุพันธ์ของความเร็ว) การค้นพบของไอแซก นิวตันที่ว่าแรงจะทำให้เกิดความเร่งโดยแปรผกผันกับปริมาณที่เรียกว่ามวล ซึ่งไม่ขึ้นอยู่กับอัตราเร็วของระบบ เรียกว่ากฎข้อที่สองของนิวตัน กฎนี้ทำให้เราสามารถทำนายผลกระทบของแรงต่อระบบเป็นจุดใดๆ ที่เราทราบมวล กฎนั้นมักจะเขียนดังนี้
F = dp/dt = d (m·v) /dt = m·a (ในกรณีที่ m ไม่ขึ้นกับ t)
เมื่อ
F คือแรง (ปริมาณเวกเตอร์)
p คือโมเมนตัม
t คือเวลา
v คือความเร็ว
m คือมวล และ
a=d²x/dt² คือความเร่ง อนุพันธ์อันดับสองของเวกเตอร์ตำแหน่ง x เมื่อเทียบกับ t
ถ้ามวล m วัดในหน่วยกิโลกรัม และความเร่ง a วัดในหน่วย เมตรต่อวินาทีกำลังสอง แล้วหน่วยของแรงคือ กิโลกรัม-เมตร/วินาทีกำลังสอง เราเรียกหน่วยนี้ว่า นิวตัน: 1 N = 1 kg x 1 m/s²
สมการนี้เป็นระบบของสมการอนุพันธ์อันดับสอง สามสมการ เทียบกับเวกเตอร์บอกตำแหน่งสามมิติ ซึ่งเป็นฟังก์ชันกับเวลา เราสามารถแก้สมการนี้ได้ถ้าเราทราบฟังก์ชัน F ของ x และอนุพันธ์ของมัน และถ้าเราทราบมวล m นอกจากนี้ก็ต้องทราบเงื่อนไขขอบเขต เช่นค่าของเวกเตอร์บอกตำแหน่ง และ x และความเร็ว v ที่เวลาเริ่มต้น t=0
สูตรนี้จะใช้ได้เมื่อทราบค่าเป็นตัวเลขของ F และ m เท่านั้น นิยามข้างต้นนั้นเป็นนิยามโดยปริยายซึ่งจะได้มาเมื่อ มีการกำหนดระบบอ้างอิง (น้ำหนึ่งลิตร) และแรงอ้างอิง (แรงโน้มถ่วงของโลกกระทำต่อมันที่ระดับความสูงของปารีส) ยอมรับกฏข้อที่สองของนิวตัน (เชื่อว่าสมมติฐานเป็นจริง) และวัดความเร่งที่เกิดจากแรงอ้างอิงกระทำต่อระบบอ้างอิง เราจะได้หน่วยของมวล (1 kg) และหน่วยของแรง (หน่วยเดิมเป็น 1 แรงกิโลกรัม = 9.81 N) เมื่อเสร็จสิ้น เราจะสามารถวัดแรงใดๆ โดยความเร่งที่มันก่อให้เกิดบนระบบอ้างอิง และวัดมวลของระบบใดๆ โดยการวัดความเร่งที่เกิดบนระบบนี้โดยแรงอ้างอิง
แรงมักจะไปรับการพิจารณาว่าเป็นปริมาณพื้นฐานทางฟิสิกส์ แต่ก็ยังมีปริมาณที่เป็นพื้นฐานกว่านั้นอีก เช่นโมเมนตัม (p = มวล m x ความเร่ง v) พลังงาน มีหน่วยเป็น จูล นั้นเป็นพื้นฐานน้อยกว่าแรงและโมเมนตัม เพราะมันนิยามขึ้นจากงาน และงานนิยามจากแรง ทฤษฎีพื้นฐานที่สุดในธรรมชาติ ทฤษฎีกลศาสตร์ไฟฟ้าควอนตัม และ ทฤษฎีสัมพัทธภาพทั่วไป ไม่มีแนวคิดเรื่องแรงรวมอยู่ด้วยเลย
ถึงแม้แรงไม่ใช่ปริมาณที่เป็นพื้นฐานที่สุดในฟิสิกส์ มันก็เป็นแนวคิดพื้นฐานที่แรวคิดอื่นๆ เช่น งาน และ ความดัน (หน่วย ปาสกาล) นำไปใช้ แรงในบางครั้งใช้สับสนกับความเค้น

มีแรงพื้นฐานในธรรมชาติที่รู้จักอยู่สี่ชนิด
ทฤษฎีสนามควอนตัมจำลองแรงพื้นฐานสามชนิดแรกได้อย่างแม่นยำ แต่ไม่ได้จำลองแรงโน้มถ่วงควอนตัมเอาไว้ อย่างไรก็ตาม แรงโน้มถ่วงควอนตัมบริเวณกว้างสามารถอธิบายได้ด้วย ทฤษฎีสัมพัทธภาพทั่วไป
แรงพื้นฐานทั้งสี่สามารถอธิบายปรากฏการณ์ที่สังเกตได้ทั้งหมด รวมถึงแรงอื่นๆ ที่สังเกตได้เช่น แรงคูลอมบ์ (แรงระหว่างประจุไฟฟ้า) แรงโน้มถ่วง (แรงระหว่างมวล) แรงแม่เหล็ก แรงเสียดทาน แรงสู่ศูนย์กลาง แรงหนีศูนย์กลาง แรงปะทะ และ แรงสปริง เป็นต้น
แรงต่างๆ ยังสามารถแบ่งออกเป็น แรงอนุรักษ์ และแรงไม่อนุรักษ์ แรงอนุรักษ์จะเท่ากับความชันของพลังงานศักย์ เช่น แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า และแรงสปริง แรงไม่อนุรักษ์เช่น แรงเสียดทาน และแรงต้าน

ที่มา :  http://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%A3%E0%B8%87


ตอบข้อ
อธิบาย : กาลิเลโอ ได้ทำการทดลองให้เห็นว่า วัตถุที่ตกลงสู่พื้นโลกอย่างอิสระ จะเคลื่อนที่ภายใต้แรงดึงดูดของโลก ต่อมานิวตันสังเกตุเห็นว่า ทำไมดวงจันทร์ไม่ลอยหลุดออกไปจากโลก ทำไมผลแอปเปิ้ลจึงตกลงสู่พื้นดิน นิวตันได้ทำการศึกษาค้นคว้าต่อ จนในที่สุดก็สามารถพิสูจน์ในเรื่องกฎแห่งการดึงดูดของ สสาร โดยโลกและดวงจันทร์ต่างมีแรงดึงดูดซึ่งกันและ กัน แต่เนื่องจากดวงจันทร์โคจรรอบโลก จึงมีแรงหนีสู่ศูนย์กลางซึ่งต่อต้านแรงดึงดูดไว้ ทำให้ดวงจันทร์ลอยโคจรรอบโลกได้ แต่ผลแอปเปิ้ลกับโลกก็มีแรงดึงดูดระหว่างกัน ผลแอปเปิ้ลเมื่อหลุดจากขั้วจึงเคลื่อนที่อิสระตามแรงดึงดูดนั้น
การตกอย่างอิสระนี้ วัตถุจะเคลื่อนตัวด้วยความเร่ง ซึ่งเรียกว่า Gravitational acceleration หรือ g ซึ่งมีค่าประมาณ 9.8 m/s

ที่มา : http://web.ku.ac.th/schoolnet/snet3/kung/vertic_move/vertic_m.htm



ตอบข้อ 3. 4 s
อธิบาย : การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย
คือการที่วัตถุเคลื่อนที่กลับไปมาซ้ำรอยเดิม มักจะใช้สัญญลักษณ์ว่า SHM. ตัวอย่างของการเคลื่อนที่แบบนี้ได้แก่ การเคลื่อนที่ของวัตถุที่ถูกผูกติดไว้กับสปริงในแนวราบ แล้ววัตถุเคลื่อนที่ไปมาตามแรงที่สปริงกระทำต่อวัตถุ ซึ่งเขาจะศึกษาการเคลื่อนที่นี้จากรูปที่ 1
ในรูปที่ 1a ตำแหน่ง x = 0 เป็นตำแหน่งสมดุลของปริง หรือ เป็นตำแหน่งที่สปริงมีความยาวตามปกติ ณ ตำแหน่งนี้สปริงจะไม่ส่งแรงมากระทำต่อวัตถุ ในรูปที่ 1a นี้มีวัตถุมวล m ผูกติดกับสปริง วางอยู่บนพื้นที่ซึ่งไม่มีแรงเสียดทาน ที่ตำแหน่งซึ่งปริงยืดออกจากความยาวปกติเป็นระยะทาง A สปริงจะออกแรงดึงวัตถุมวล m กลับมาอยู่ในตำแหน่งสมดุล x = 0 เรียกแรงที่สปริงกระทำต่อวัตถุนี้ว่าแรงดึงกลับ (Restoring force) ถ้า F เป็นแรงดึงกลับนี้จะได้ว่า
F = -kx -----(1)
แรงดึงกลับมีเครื่องหมายลบ เพราะทิศทางของเวกเตอร์ของแรงกับเวกเตอร์ของการขจัด x มักจะตรงข้ามกันเสมอ ค่า k คือค่านิจของสปริง (spring constant) ในรูปที่ 1 นี้ได้กำหนดให้ทิศทางขวาเป็นบวก ดังนั้นในรูป 1a ตำแหน่ง x = A จึงเป็นบวก ในขณะที่ทิศทางของแรงดึงกลับเป็นลบ และเนื่องจากวัตถุเริ่มเคลื่อนที่ที่ x = A ความเร็วของวัตถุจึงเป็นศูนย์
เมื่อปล่อยให้วัตถุเคลื่อนที่ตามแรงของสปริง วัตถุจะเคลื่อนที่มาทางซ้าย และในรูปที่ 1b วัตถุผ่านตำแหน่ง x = 0 หรือตำแหน่งสมดุลซึ่งตำแหน่งนี้ แรงที่สปริงกระทำต่อวัตถุจะเป็นศูนย์ แต่อัตราเร็วของวัตถุจะมากที่สุด โดยทิศของความเร็วจะเป็นจากขวาไปซ้าย หรือความเร็วเป็นลบ เนื่องจากพื้นไม่มีแรงเสียดทาน และสปริงก็ไม่ออกแรงมากกระทำต่อวัตถุ ดังนั้นที่ตำแหน่ง x = 0 นี้ วัตถุจึงสามารถรักษาสภาพการเคลื่อนที่ตามกฎข้อที่ 1 ของนิวตันไว้ได้ วัตถุจึงยังคงสามารถเคลื่อนที่ต่อไปทางซ้ายได้
ในขณะที่วัตถุเคลื่อนที่ไปทางซ้ายนั้น วัตถุก็จะผลักให้สปริงหดสั้นไปจากความยาวเดิมด้วย ดังนั้นสปริงจะพยายามออกแรงดึงกลับไปกระทำต่อวัตถุ เพื่อให้ตัวเองกลับไปสู่ความยาวปกติอีก จนในรูปที่ 1 C แสดงถึงขณะที่วัตถุเคลื่อนที่ไปทางซ้ายมากที่สุด ความเร็วของวัตถุจะเป็นศูนย์ทิศของแรงดึงกลับจากซ้ายไปขวา หรือเป็นบวก เวกเตอร์ของการขจัดของวัตถุมีทิศจากขวาไปซ้าย และมีขนาดเป็น A ดังนั้นตำแหน่งของวัตถุขณะนี้จึงเป็น x = -A มีข้อน่าสังเกตว่า ขนาดของการขจัดมากที่สุดของวัตถุไม่ว่าจะเป็นทางซ้ายหรือขวาจะเท่ากัน คือเป็น a เนื่องจากในรูป 1c นี้มีแรงมากระทำต่อวัตถุเพียงแรงเดียว คือแรงจากสปริง ซึ่งมีทิศไปทางขวา วัตถุจึงเคลื่อนที่กลับไปทางขวาด้วยอิทธิพลของแรงนี้



ตอบข้อ 2. ไม่ขึ้นกับมวลของลูกตุ้ม

อธิบาย :
พิจารณาลูกตุ้มที่ผูกติดกับเชือกเบา แล้วแกว่งไปมาในแนวดิ่งในทำนองเดียวกับการแกว่งของลูกตุ้มนาฬิกา โดยกำหนดให้
m เป็นมวลของลูกตุ้ม
L เป็นความยาวของเส้นเชือก
Q เป็นมุมที่เส้นเชือกทำกับแนวดิ่ง
 
ที่มา : http://web.ku.ac.th/schoolnet/snet3/supinya/harmonic-pen/pendulum.htm


ตอบข้อ 4. ระยะทางเพิ่มขึ้นสม่ำเสมอ

อธิบาย : พอมีความเที่ยงตรงพอสมควร สำหรับการทำงานในระบบ ความถี่ต่ำ เภทที่ใช้ความถี่ต่ำในระบบที่ใช้ไฟ 50 หรือ 60 Hz (พวกมอเตอร์ทั้งหลาย)

การเพิ่มหรือลดกำลังไฟฟ้าเข้าสู่ระบบจะมีทั้งการเพิ่มแรงดัน ด้วยการเพิ่ม Exciter และ เพิ่มความเร็วรอบ โดยเพิ่มรอบให้ไฟออกมากขึ้น ซึ่งจะจ่ายไฟจากตัวนั้นมากขึ้นแต่ความถี่ก็จะสูงขึ้น หากมีเครื่องกำเนิดไฟฟ้าเพียง 2 ตัว การถ่ายโหลด ที่จะทำให้ความถี่ไม่เปลียน

คือเร่งความเร็วตัวที่จะเอาไปแทนขึ้น ขณะเดียวกับลดความเร็วของตัวที่จะปลดออก ลง ความถี่จึงจะยังคงที่

ในระบบใหญ่ๆก็คงเป็นลักษณะเดียวกัน แต่เครื่องกำเนิดอยู่คนละแห่งในการทำให้สำพันธ์กันจึงไม่ใช่ง่ายนัก

และยังขึ้นกับจำนวนภาระ (Load) ที่ใช้ไฟอยู่ด้วย หากมีการเปลียนแปลงภาระมากๆในเวลาเดียวกัน ก็จะทำให้ความถี่ตกลงไปด้วย

ในห้องควบคุมจะมีนาฬิกาสองเรือนที่เดินด้วยมอเตอร์แบบความเร็วคงที่(เปลี่ยนตามความถี่)เรือนหนึ่ง

และเดินด้วยแร่ Crytal ที่เที่ยงตรงกว่าและจะคอยปรับความถี่ของระบบให้นาฬิกาสองเรือนเดินตรงกัน ไม่ให้ผิดแม้แต่เสี้ยวของวินาที

ทำให้ค่าเฉลี่ยของระบบในระยะยาวๆเที่ยงตรง ใช้ได้ เสมอ

สรุปคงไม่ดีพอที่จะไปใช้สอบเทียบกับเครื่องมือที่ใช้ความถี่ สูงๆได้

เพราะ +/- 0.01 % ของ 50 Hz ก็เพียง เล็กน้อยเท่านั้น แต่หาก 0.01 % ของความถี่สูง เช่น 5 ล้าน Hz ก็คงมากโขอยู่

ที่มา : http://www.vcharkarn.com/include/vcafe/showkratoo.php?Pid=31704



ตอบข้อ 3. ความเร็วของวัตถุในแนวดิ่งมีค่าเป็นศูนย์

อธิบาย : โปรเจคไตล์ขอให้ทำความเข้าใจว่า การเคลื่อนที่แบบนี้เกิดบนสมมุติฐานที่ว่า การเคลื่อนที่ในแกน X และการเคลื่อนที่ในแนวแกน Y แยกจากกัน ทำให้เวลาคิด ก็แค่คิดแบบต่างคนต่างไปก็พอ
ภาคคำนวน
ก่อนอื่นเราต้องรู้วิธีการแตกเวกเตอร์ก่อน ในรูปนั่นอ่ะ แตกเวกเตอร์ของความเร็วได้อะไร ในแนวแกน X และ Y
แกน X คือ แกนนอน แกน Y คือแกนตั้งนะครับ
โดยทั่วไป เค้าก็จะจำกันว่า ชิดมุมใช้คอส ห่างมุมใช้ไซน์
หมายถึง ถ้าเป็นความเร็วในแนวที่ชิดกับมุม ดูจากในรูป คือแกน X ก็จะใช้ เวกเตอร์ที่จะแตก(U)แล้วคูณด้วย cos จากตัวอย่าง ถ้าห่างมุมก็จะใช้ U คูณด้วย sin
จากตัวอย่างความเร็วในแนวแกน X ก็คือ U cos เซต้า   แกน Y ก็คือ U sin เซต้า
ความจริงเราสามารถพิสูจน์ได้ไม่ยาก ว่าแตกแล้วทำไมถึงได้แบบนั้น ใช้ตรีโกณง่ายๆ
ลองไปทำดูเองนะครับ มันหารูปที่จะทำให้ดูยากอ่ะ ขอข้ามไปแล้วกัน

ทีนี้เวลาทำโจทย์อ่ะ ก็ต้องแยกความเร็วคิดก่อนเลย แตกเวกเตอร์แบบข้างบนแหละ ให้ได้ความเร็วออกมาทั้งแกน X และแกน Y
 
ที่มา : http://www.skoolbuz.com/library/content/1844



ตอบข้อ
อธิบาย :
การเคลื่อนที่แบบโพรเจกไทล์ (Projectile)    คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง ตัวอย่างของการเคลื่อนที่แบบโพรเจกไทล์  ได้แก่ ดอกไม้ไฟ น้ำพุ การเคลื่อนที่ของลูกบอลที่ถูกเตะขึ้นจากพื้น การเคลื่อนที่ของนักกระโดดไกล  
กาลิเลโอ เป็นคนแรกที่อธิบายการเคลื่อนที่แบบโพรเจกไทล์ได้อย่างละเอียด เขาได้อธิบายว่าถ้าจะศึกษาการเคลื่อนที่ของวัตถุแบบโพรเจกไทด์ได้อย่างละเอียดนั้น ต้องแยกศึกษาส่วนประกอบในแนวราบ และ ในแนวดิ่งอย่างอิสระไม่เกี่ยวข้องกัน
กาลิเลโอได้อธิบายว่า การเคลื่อนที่แบบโพรเจกไทล์ เป็นการเคลื่อนที่ที่ประกอบด้วยการเคลื่อนที่ในสองแนวไม่ใช่แนวเดียว โดยในแนวดิ่งจะมีแรงเนื่องจากแรงดึงดูดของโลกกระทำต่อวัตถุให้เคลื่อนที่ลงด้วยความเร่ง 9.8 m/s2     และในเวลาเดียวกับที่วัตถุถูกดึงลง โพรเจกไทล์ก้ยังคงเคลื่อนที่ตรงในแนวราบด้วย ( หลักความเฉื่อยของกาลิเลโอ Galilao's pricipal Inertia ) เขาแสดงให้เห็นว่า โพรเจกไทล์นั้นได้ จะประกอบด้วยการเคลื่อนที่ 2 แนว พร้อม ๆกัน โดยในแต่ละแนวนั้นจะเคลื่อนที่อย่างอิสระไม่เกี่ยวข้องกัน    และยังพบว่าเส้นทางการเคลื่อนที่ของโพรเจกไทล์จะเป็นรูปเรขาคณิต ที่เรียกว่า "พาราโบลา

ที่มา : http://www.tlcthai.com/webboard/view_topic.php?table_id=1&cate_id=125&post_id=69676&title=%5B%BF%D4%CA%D4%A1%CA%EC%5D-%A1%D2%C3%E0%A4%C5%D7%E8%CD%B9%B7%D5%E8%E1%BA%BA%E2%BE%C3%E0%A8%A1%E4%B7%C5%EC-(Projectile)